Assessing the Quality of Survey Data 1 |
|
Convenor | Professor Joerg Blasius (University of Bonn ) |
The aim of this work is to understand if (and how) a reiterated data gathering may affect data quality in survey researches. Quality is intended as data compliance to the logic and methodological conditions required by the research objectives. Validity and reliability do not need further reflections with reference to repeated surveys, therefore this work focuses on completeness, consistence and relevance, providing conceptual and operational definitions. Also the possible influences of some respondents characteristics on these issues are explored. An empirical case study is analyzed: a quasi-experimental research, conducted to evaluate an informative campaign about chemical risks.
This study evaluated whether data validity and data quality can be increased by asking responders for their phone number within a survey. As a test/control feature, we compared data quality when the question was asked 1) at the beginning or 2) at the end of the survey. Survey questions referenced a number of innocuous, embarrassing, unethical, or illegal activities, some of which were validated with third party data.
In the presentation we will highlight the issue of processing errors in cross-national survey research. Of all the elements of the preparation and administration of survey fieldwork, relatively little attention has been paid to processing errors, although they can cause both systematic and random errors. The Harmonization Project Democratic Values and Protest Behavior (dataharmonization.org) deals with processing errors explicitly in one of the quality assessments, by focusing on the quality of the correspondence between the documentation and data. We will present the results of preliminary analyses of processing errors and its impact on data quality.
The census is often the main source of information on family structures as its data describe household composition for the entire population of a national territory. Nevertheless, census forms are self-administered and family relationships are captured through a limited set of options. The objective of this presentation is to evaluate how household composition variables generated from census data best describe or mis-represent different family types. Taking advantage of the fact that the Family survey is collected simultaneously with the French census, we conduct a systematic comparison: the census household type versus a finer description given by the Family
In this work we report the unexpectedly high number of duplicates of responses discovered in data files of well-known international survey projects. In our analysis of cases we distinguished subsets of the following variables: respondent ids, technical (administrative) variables, observations and notes made by interviewers, respondents' age and gender, urban/rural division, household members characteristics, variables derived and constructed from source variables, and source variables coming from respondents' answers. We were excluding subsequent subsets of variables and were searching for duplicates in the remaining variables. With every step we observed the growing number of duplicates.